The Lee Group

Department of Chemistry University of Copenhagen

Universitetsparken 5
2100 Copenhagen Ø


More than 13 gigatonnes of CO2 are released annually into the atmosphere as a result of fossil fuel combustion, causing climate changes and ocean acidification. In addition to carbon-capturing processes, CO2-functionalization using a catalytic process is an ideal solution towards creating more valuable resources to compensate the input energy in the conversion process. This work implies that industrial waste, namely CO2 can be transformed to industrially useful  chemicals, serving as a fuel source. Additionally, we are highly focused on the development of unprecedented asymmetric catalytic protocols utilizing CO2. Our methodology development will be beneficial to understand the origin of chirality on Earth, which is one of the profound "unnatural" events on our planet. By taking advantage of knowledge in organo and organometallic asymmetric catalysis, we will provide ground-breaking synthetic methodology for constructing from small to large and complex molecules in enantioselective fashion from carbon dioxide.



The increasing scarcity of potable water (drinking water) has been dramatically emphasizing the importance of seawater desalination as a primary means to obtain an ample and safe fresh water supply. Recent global climate changes are seemingly accelerating the unpredictability of
secure water supply sources—even in developed countries—threatening society’s sustainable growth. Seawater is a seemingly limitless water source, but obtaining energy-efficient desalination processes is a formidable challenge. Our group aims at facile desalination processes using functionalized organic materials, organic porous polymers, and membrane systems. This project is operating in collaboration with CowaTech ApS.


Catalytic Application of
Functionalized Materials

Organic reations have been demonstrated under mostly homogeneous conditions. However, heterogeneous solid materials exhibit significant advantage, i.e. recyclability and high stability, therefore useful for many real-world applications. In our laboratory, we will tackle fundemantly important organic reactions using functinoalized state-of-the-art materials, for example, metal-organic frameworks (MOF), inorganic metal nanoparticles, functionalized polymers, in combination with high-performance organo- and organometallic catalysts.

This site was designed with the
website builder. Create your website today.
Start Now